Adiponectin Protects against Glutamate-Induced Excitotoxicity via Activating SIRT1-Dependent PGC-1α Expression in HT22 Hippocampal Neurons

نویسندگان

  • Liang Yue
  • Lei Zhao
  • Haixiao Liu
  • Xia Li
  • Bodong Wang
  • Hao Guo
  • Li Gao
  • Dayun Feng
  • Yan Qu
چکیده

Glutamate- (Glu-) induced excitotoxicity plays a critical role in stroke. This study aimed to investigate the effects of APN on Glu-induced injury in HT22 neurons. HT22 neurons were treated with Glu in the absence or the presence of an APN peptide. Cell viability was assessed using the MTT assay, while cell apoptosis was evaluated using TUNEL staining. Levels of LDH, MDA, SOD, and GSH-Px were detected using the respective kits, and ROS levels were detected using dichlorofluorescein diacetate. Western blot was used to detect the expression levels of silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), cleaved caspase-3, Bax, and Bcl-2. In addition to the western blot, immunofluorescence was used to investigate the expression levels of SIRT1 and PGC-1α. Our results suggest that APN peptide increased cell viability, SOD, and GSH-Px levels and decreased LDH release, ROS and MDA levels, and cell apoptosis. APN peptide upregulated the expression of SIRT1, PGC-1α, and Bcl-2 and downregulated the expression of cleaved caspase-3 and Bax. Furthermore, the protective effects of the APN peptide were abolished by SIRT1 siRNA. Our findings suggest that APN peptide protects HT22 neurons against Glu-induced injury by inhibiting neuronal apoptosis and activating SIRT1-dependent PGC-1α signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNF146 Inhibits Excessive Autophagy by Modulating the Wnt-β-Catenin Pathway in Glutamate Excitotoxicity Injury

Glutamate induced excitotoxicity is common in diverse neurological disorders. RNF146 as an E3 ubiquitin ligase protects neurons against excitotoxicity via interfering with Poly (ADP-ribose) (PAR) polymer-induced cell death (parthanatos). However, the neuroprotective role of RNF146 has not been fully understood. We aimed to investigate the role of RNF146 in modulating autophagy in HT22 cells und...

متن کامل

Coenzyme Q10 Protects Hippocampal Neurons against Ischemia/ Reperfusion Injury via Modulation of BAX/Bcl-2 Expression

Introduction: Preliminary studies have con.rmed reduction in cell death following treatment with antioxidants. According to this .nding we study the relationship between consumption of CoQ10 and expression of Bax and Bcl2 in hippocampus following ischemia/reperfusion as proteins involved in cell programmed death or apoptosis. Methods: We studied the protective role of CoQ10 against ischemia-rep...

متن کامل

Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults.

Neurons rely heavily on mitochondria for their function and survival. Mitochondrial dysfunction contributes to the pathogenesis of neurodegenerative diseases such as Parkinson's disease. PGC-1α is a master regulator of mitochondrial biogenesis and function. Here we identify necdin as a potent PGC-1α stabilizer that promotes mitochondrial biogenesis via PGC-1α in mammalian neurons. Expression of...

متن کامل

Differentiation renders susceptibility to excitotoxicity in HT22 neurons☆

HT22 is an immortalized mouse hippocampal neuronal cell line that does not express cholinergic and glutamate receptors like mature hippocampal neurons in vivo. This in part prevents its use as a model for mature hippocampal neurons in memory-related studies. We now report that HT22 cells were appropriately induced to differentiate and possess properties similar to those of mature hippocampal ne...

متن کامل

Mitochondrial Biogenesis and Peroxisome Proliferator–Activated Receptor-γ Coactivator-1α (PGC-1α) Deacetylation by Physical Activity

OBJECTIVE Transcriptional peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) plays a key role in mitochondrial biogenesis and energy metabolism and is suggested to be involved in the exercise-induced increase in mitochondrial content. PGC-1α activity is regulated by posttranslational modifications, among them acetylation or phosphorylation. Accordingly, the deacetylase SIRT1 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016